Cellular asymmetry in Chlamydomonas reinhardtii.

نویسندگان

  • J A Holmes
  • S K Dutcher
چکیده

Although largely bilaterally symmetric, the two sides of the unicellular alga Chlamydomonas reinhardtii can be distinguished by the location of the single eyespot. When viewed from the anterior end, the eyespot is always closer to one flagellum than the other, and located at an angle of approximately 45 degrees clockwise of the flagellar plane. This location correlates with the position of one of four acetylated microtubule bundles connected to the flagellar apparatus. Each basal body is attached to two of these microtubule rootlets. The rootlet that positions the eyespot is always attached to the same basal body, which is the daughter of the parental/daughter basal body pair. At mitosis, the replicated basal body pairs segregate in a precise orientation that maintains the asymmetry of the cell and results in mitotic poles that have an invariant handedness. The fusion of gametic cells during mating is also asymmetric. As a result of asymmetric, but different, locations of the plus and minus mating structures, mating preferentially results in quadriflagellate dikaryons with parallel flagellar pairs and both eyespots on the same side of the cell. This asymmetric fusion, as well as all the other asymmetries described, may be necessary for the proper phototactic behavior of these cells. The invariant handedness of the spindle pole, eyespot position, and mating structure position appears to be based on the inherent asymmetry of the basal body pair, providing an example of how an intracellular pattern can be determined and maintained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii

Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...

متن کامل

Biosynthesis of Silver Nanoparticles Using Chlamydomonas reinhardtii and its Inhibitory Effect on Growth and Virulence of Listeria monocytogenes

Background: Biosynthesis of nanoparticles using microorganisms, enzymes, and plant extracts is regarded as an alternative to chemical methods. Microalgae appear to be an efficient biological platform for nanoparticle synthesis as they grow rapidly and produce large biomass at lower cost. Objectives: The possibility of silver nanoparticles biosynthesisby freshwater green microalgae, Chlamydomona...

متن کامل

The ultrastructure of the Chlamydomonas reinhardtii basal apparatus: identification of an early marker of radial asymmetry inherent in the basal body.

The biflagellate unicellular green alga Chlamydomonas reinhardtii is a classic model organism for the analysis of flagella and their organizers, the basal bodies. In this cell, the two flagella-bearing basal bodies, along with two probasal bodies and an array of fibers and microtubules, form a complex organelle called the basal apparatus. The ultrastructure of the basal apparatus was analysed i...

متن کامل

Green algae Chlamydomonas reinhardtii possess endogenous sialylated N-glycans

Green algae have a great potential as biofactories for the production of proteins. Chlamydomonas reinhardtii, a representative of eukaryotic microalgae, has been extensively used as a model organism to study light-induced gene expression, chloroplast biogenesis, photosynthesis, light perception, cell-cell recognition, and cell cycle control. However, little is known about the glycosylation mach...

متن کامل

Analysis of the phosphoproteome of Chlamydomonas reinhardtii provides new insights into various cellular pathways.

The unicellular flagellated green alga Chlamydomonas reinhardtii has emerged as a model organism for the study of a variety of cellular processes. Posttranslational control via protein phosphorylation plays a key role in signal transduction, regulation of gene expression, and control of metabolism. Thus, analysis of the phosphoproteome of C. reinhardtii can significantly enhance our understandi...

متن کامل

Adaptive responses in Chlamydomonas reinhardtii.

The photosynthetic single cellular alga Chlamydomonas reinhardtii has been used as a model organism to examine in detail the physiological, biochemical and molecular processes of photosynthesis, flagella synthesis and movement, mineral stress, interactions between nucleus, chloroplasts and mitochondria and other processes. In this review we summarize part of the current knowledge on adaptive re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 94 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1989